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ABSTRACT

Ihe gasdynamic probiem of coliapsing shocks and detonation waves
having spherical or cylindrical symmetry is considered near the point
or axis of symmetry. The solution basic to this work is the self-similar‘
flow of a collapsing symmetrical shock wave with counterpressure neglected.
The focussing effect as the flow progresses cauges the front to accelerate
and its velocity is singular at the instant of collapse. 1In the present
work the perturbations, due to ccunterpressure and also to a uniform heat
release, which give rire to essentially identical mathematical solutions,

are evaluated. The basic self-similar solution is investigated in detail

over a range of values of the specific heat ratio.




IMPLODING SHOCKS AND DETONATTONS

Robert L. Welsh

Division of Aeronautical Sciences
Univeraity of California, Berkeley

(On leave of Absence from Department of Mathematics
University of Strathclyde, Glasgow)

The similarity solution to the problem of ; contracting (implod-
ing) spherical or cylindrical shock front propagating into a uniform gas
at rest is well known. As the shock progresses its surface area diminishes
causing its velocity to increase towards the center of symmetry, where it
is infinite., The similarity solution is valid near the center of symmetry,
where the shock is strong.

In the present paper the shock is replaced b} & contracting
detonation front propagating into a uniform gas and releasing a constant
amount of energy per unit mass of gas. At large distances from the
center, where the curvature is negligible, the detonation is a Chapman-
Jouguet front, i.e., it travels with sonic speed relative to the burnt
gas. The front accelerates towards the center of symmetry and becomes
overdriven, the motion now being governed more by the compression effects,
due to focussing of the front, than by the heat relesase. The solution
for the final stages is obtained as a perturbation, of order the inverse
square of the speed of the front, on the corresponding similarity solu-
tion involving a shock wave. In the latter solution the strong shock
relations are applied at the front so that only the undisturbed density
enters into the problem, which has no time acale. In the present case

of a detonation the heat release is taken into account, to first order
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so that the basic similarity hypothesis is unaltered, in the conservation
equations at the front. Tha form of the aticn 5o obiaiued is
identical to that due to taking into account the pressure (or sound
speed) of the undisturbed gas to first order. The disturbance of the
speed of the front due to heat r lease and initial pressure are evaluated
for several spherical and cylindrical cases by linearizing the equations
of motion. The solution has to satisfy the conservation equations at
the front and also be regular on a certain characteristic. The basic
and perturbation equations are integrated numerically by making use of
the power series expansions about this characteristic. A comparison is
made with the results obtained by the approximate method as given by
Whitham.

The results obtained by Butler for the Guderley solution are
recomputed and extended. It is found necessary to investigate the

existence and uniquenes of this solution.

1. INTRODUCTION

The unsteady motion of a perfect, inviscid, non-heat-conducting
gas is ih general governed by partial differential equations. However,
in the case of a flow which 1s one-dimensional, or spherically or
cylindrically symmetric, so that the flow variables depend on a dis-
tance coordinate R and the time coordinate t, there is a class of solu-
tions in which all variables are functions of a single combination of R
and t, R/t% where & is a constant. Such flows are self-similar (Sedov,
1959) and are governed by ordinary differential equations. The special
case @ = ¢ c.rresponds to a uniformly expanding or contracting flow, so
that if such a flow jis adiabatic then it is also homentropic, apart
from entropy jumps across discontinuities, as any shock wave in the

flow is of uniform strength. An example of a flow of this type is that
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of a strong point-explosion (Sedov, 1959; Taylor, 1950b) which involves
aii €éApanviug, deuvaylnyg spherical shock wave.

The problem to be investigated here is that of a contracting
spherical or cylindrical detonation wave propagating into a uniform
combustible gas. It is already known that there is no solution involving
a uniformly contracting front (Selberg, 1959; Stanyukovich, 19€7). This
result will be deduced later from investigation of the integral curves
of R/t, homentropic solutions.

In order to solve the problem of a contracting detonation front

- 1t will be necessary to study Guderley's solution (Guderley, 1942; Butlex,1954)

for a converging shock wave, in which the shock front accelerates towards
R = 0, where its velocity is infinite. If the shock path is R = ) (t),

*
then the shock speed U 1is given by

* -
IR A where 0 < @ < 1.

The Guderley similarity solution is valid for small values of A, for
which the shock is strong so that the undisturbed gas pressure can be
neglected., The flow variables behind the front thus depend upon the
shock speed and undisturbed density only, which leads to the similarity
hypothesis. If we now congider the effect of a uniform heat release in
the medium as the front passes through it, then this results in the
addition of a finite amount of energy per unit mass to the system and is
thus a perturbation on the Guderley solution. The form of the perturba-
tion can be deduced as follows. The particle velocity behind the shock
is given by

* 2_ ot . .2 ,1-l/a
s y+1 " y+l




Let the particle velocity behind the detonation be

* *
=
up us + Vv

*
where V is supposed small relative to ug- The extra kinetic energy per
unit mass, which is directly due to the heat release and so must be
*
finite, is of order vus and hence the perturbation velocity V is of order

*o -2+2
U 2 or A lo relative to the basic, shock wave solution. Similarly

the sound speed perturbation is of order X-2+2/a. Throughout the flow

in general the perturbations are of order R'2+2/a. The effect of allow-
ing for the initial pressure (or internal energy) of the undisturbed gas

gives rise to perturbations of precisely the same form. Let the speed

of the front be given by

* Xl-lla 242/

u )

(1+pA

where B is a constant due either to heat release or initial pressure, or
both. In a given case we require the values of @, B to determine the
path of the front.

The evaluation of the constant parameter & is performed by

integrating the equations. of motion, which can be reduced to a single

first order, non-linear differential equation, subject to certain boundary

conditions. In the case of a point-explosion a is determined simply by
consideration of the dimensions of the basic parameters (the density and
the energy of the explosion). However, in the contracting case there is
only one basic parameter, the density, and a unique mathematical solu-
tion is obtained by assuming that the flow {s regular on a certain
characteristic following beﬁihd the shock. The conservation equations

across the front and the regularity condition on the
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characteristic provide the two necessary boundary conditions for the
solution of the differential equation. The values of @ for the six
cases y = 1.2, 1.4, 5/3, spherical and cylindrical, have been computed
by Butler., For an arbitraiy chivlce of & there are four possibie solu-
tions which satisfy the regularity condition but in each case only one
of these can be made to satisfy the conservation equations at the front.
In order to solve the equations governing the perturbations it 1s
necessary to recompute the basic similarity solution. Butler's results
are extended to y = 3, for the products of a detonation, and in this
case it is found that the choice of solution from the four possibilities
differs from that for the lower values of y. The changeover from one
solution to the other is discussed in terms of the integral curves of
the system.

To find the correct value of & we must use a method of trial
and error. The equation 18 integrated with an arbitrary value of C,
starting at the characteristic with the regularity condition satisfied,
and the discrepancy between this solution and the shock point noted.

We repeat the process with various values of @, until one is found
passing through the shock point to the required accuracy.

The equations governing the perturbations are three simultaneous,
linear, f£irst order differential equations, the coefficients containing
the basic similarity solution. Again the solution has to satisfy
boundary conditions at the front and the characteristic, the displace-
ments of each from the basic solution being accounted for. However, the
linearity of the equations means that the appropriate solution can be
evaluated by taking a certain combination of any two linearly independent

solutions.
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The method of integration of the basic and perturbation equations

manes uwse ui ithe power series expansions about the critical characteristic.

In this way we avoid any difficulty due to derivatives being jndetormi-
nate on direct substitution into the differential equations. The solu-
tion is developed by an iterative procedure which produces approximations
to the solution and its derivative in tabular form. Each iteration
effectively takes into account another term in the power series. B is
calculated for y = 1.2, 1.4, 5/3, 3 for both cylindrical and spherical
symmetry, and for heat release and undisturbed pressure. Comparison is
made with results obtained by the approximate method in the form given
by Whitham (1958). It is known that this approximate method, as applied
by Chisnell (1957) in his "shock-area" rule, gives extremely accurate
results for the values of @ but it i1s found here that the approximate
values of B by this method are much less accurate.

The equations governing the motion are integrated between the
front and the characteristic, which is necessary for the evaluation of
@ and B. To obtain the distribution of the physical variables behind
the front the integration would have to be continued as far as t = 0,
at which instant the shock is at R = 0 and is reflected. If all the
heat energy available is released during the contracting phase of the
motion then the front is reflected as a shock wave.

Contracting shorck waves have previously been investigated both
experimentally (Perry and Kantrowitz, 1951) and numerically (Payne,
1957). A problem having great similarity to that of converging shocks
ig that of cavitation in water, which has been studied Ly Hunter (1960,
1963) and differs from the former in the boundary conditions at the front
and the fact that the motion is taken to be homentropic. A regularity

condition on a certain characteristic is also employed to obtain a




unique solution. The similarity hypothesis requires that the density in

The ¢flcci of {inite density (Holt and Schwartz 1963;

thae r'nv{ty hao movo,
Holt, 1965; Holt, Kawaguti and Sakurai), to first order is that of a pertur-
bation on Hunter's solution, of order the inverse square of the speed of the

front, and is analagous to the present work.

2. EQUATIONS OF MOTION AND SIMILARITY

The equations governing the symmetric motion of a perfect,
inviscid, non-heat-conducting gas with constant specific heats cp, c,s

can be expressed in characteristic form as

Q_, * * Q % * : Juc 1 %% 3¢
Solu F ke D)+ (u tc)aR(u +ke )=+ = +;c <R 1)
e *
od * o
+
- @
where * denotes a physical quantity,

*
u denctes particle velocity,

* . *

¢ denotes sound speed, defined by ¢ = (-2;) . = XR; s

d s o
*
8 denotes specific entropy 2y
%Y1
* * c
@ , a measure of entropy, is defined by 6 = log 5,
p
2

k 71

and j = 1 for cylindrical symmetry

2 for spherical symmetry.

Suppose that U* is the velocity of a wavefront R = A(t), moving
into uniform gas. For the case of a strong shock wave the boundary
values immediately behind the front, which are identical to those for

a plane front if A is large in comparison with the shock width, are




q* = k log(t U*) + Q:

* *
where ¢° is the value of § at some reference state and the negative sign

*
is selected if U is negative. The assumption that the shock is strong

leads to the neglect of the undisturbed pressure (or gsound speed).
* ok *
the flow behind the wave is determined by U , Po? and since U has the
*
dimensions of velocity it must be related to A, t by U = a% , where &

is a dimensionless constant and t < O for the contracting case (t = 0

is the instant at which the front is at R = 0). Hence

so that the equation of the front is

¢~ 1/e

and we can choose A = -~ @ by fixing the length scale appropriately.

Thus the front is

* -
v - kl 1/a )

Thus

*
Let & = -—%76 . The values of u, ¢ on the shock, £ = - 1, are
aR

* 2 Xl-l/a

u = —

T oyl

FL B o "
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po—a———7\
Koo N2y(y-1) [ 1-1/a
v

1 %*
of = k(l-a) log A + do

and the general values are

where

u* - u(g)Rl'I/a

c* = c(g)RI-I/a

* 1 *
p = k(1-3) log R + #(2) + 8

u(=1) =~ _ZT

(1) NRLQEL) @)

@(-1) = 0.

* k%
We have thus expressed the quantities u , ¢ , § in terms of u, c, @,

- which depend on a single variable &, and are governed by the ordinary

differential equations, deduced from (1) and (2)

2 .
- £ Cute)} %(u:l—_kc) = (1-0) (upe) (utke) & jouc - -:—-{g g%ucu-a) (5)

déd _ k(1-o)u
Ty 1-tu (6)

Define the dimensionless variables r, s by

-~

r=ut, s =ct
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then the equations (5), expressed in terms of r, s after eliminating

d¢

<= using (6) become

H

2D¢ %i = (1-r+s)B+ + (l-r-s)B_

)

2kDE %% = (1-r+s)B, - (1-r-8)B_

where
D= (r-1)(1-r+s8)(1l-r-s)
Bt = (r-1) {l-a(rj-_s)} (r+ks) + ja(r-l)rs + ﬂi;al 82

The equations (7) combine to give a single differential equation for

r = r(s)

(1-r+s)B+ + (l-r-s)B_
ds " T-r-e)8, - (I-r-s)B. (8)

1
=

Since the wave front is at R = ) at the instant t = 0, negative values
of 8, which correspond to negative values of t, arise from contracting
fronts and positive values of s from expanding fronts.

The conservation equations across the front, assumed plane and

including a4 heat release term are

* % * * 6 % *
plu-U)m=p (u-U)

* ok % k2 * ok * * 2
ptp(u-U)" =p+op (u -U)
* *
L* %2y . b Ll.* 42, . P
z(u - U ) + Y-l p* z(uo- U ) + Y-l -pwo— + Q (9)

where Q is the heat release per unit mass of gas, o denotes the undisturbed

*
gas and u, = 0 if the gas is initially at rest.
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* k% *2
The solution of (9) for u , c , ¢ in terms of Q, <, (retained

oL oL arm
to first order since U > > co,Q"’3 1s

* 2 % KU*'I
u ;;TU

* * R
+c = EU +E'U

* %*
@ =k log (+U ) + HOU

where

2

2
[} - -
E 6y-y -1

- c: + % 2y(y-1)(3-Y)Q

7y

w2

2(y+1) { 2y (v-1)

1 3y-1
H = .2—'%_—1-) {(Y"‘UQ + 2=t

yiy-1) €

Thus the perturbation terms are of order U

*.2 *
+ 00

-242/a

(10)

relative

to the basic solution, as deduced previously, and the general solution

is of the form

1-1/x

u* = u(E)R + u(t)R

1-1/c

c* = c(8)R + c(&)R

¢ - k(l-é) log R + @(t) + F(&)R

-141/a

-1+1/x

-2+2/c

(11)

The equations governing the perturbation functions u, ¢, F are

obtained by substituting (11) into the equations of motion (1) and (2),

bt R m e ®
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linearizing the result and eliminating derivatives of any basic terms
by use i Lhe Lasic equations. 1n terms or the dimensionless

variables r, 8 defined as

and F, these are

£(lL - r ¥ s)ag (r + ks) = oy

Ay

(r-1)2(1 -r+3s)

(1 -r + s)g% (T + ks) =

k(l-) -
r

g(l-r)% + 2(1<@)rF = i

and hence, in terms of r(s), s(s), F(s),

or-)@EE+10B = (1 -r+a)E - 0B,

(x-1)(1 - ¢ ¥ s)(gé + k%i'—)a_‘_ - AJS—: + k)
( r-1)%§£+ = (1-a)(1 - v - s)(%f~+ k){zr(r-1)p + k?) (13)

3. HOMENTROPIC SOLUTIONS

In the special case o = 1, corresponding to uniformly expanding

or contracting waves, the equation (8) reduces to

ar r _(ep? - faw)
ds 8 (1)@ -r - %r) -sz

The integral curves of this equation are given in Figure 1 (Courant and

Friedrichs, 1948, page 426), the direction being of that of increasing

(12)




13

time. The equation has six singular points

(0,0), (1,0), (0,+1), (:—.‘f— finEil)
and‘it can be shown that the nature of these singularities does not
depend on the value of Y or whether j = 1 or 2. A point in the r,s
plane corresponds to a path In the R-t plane. The possible changes
across 4 detonation or shock front form a locus in the r,s plane. From
the conservation equations across a detonation front, with a constant
*

*
heat release Q per unit mass, the following relation between u ; ¢

behind the front can be obtained

2
c* = (U*-u*) 1'2'_1u* + U* - (y-l){;wg

which, in terms of r,s, becomes

32 = (l-r)i'xélr+1 - Sl:i%g

rU

This is the equation of the locus of the possible transitions across
a detonation front. The corresponding shock locus is obtained by

setting Q = O
s2 = (l-r) s\xé-l-ﬂ-l-g

which is an ellipse. In each of these equations the value of r has to
be not greater than ;%T’ which corresponds to an infinitely strong front.

*
The two curves intersect at S+ where r = 2. 4 Q i8 negligible if U

y+1
tends to infinity. The lines r = 1 + 8 are sonic lines and are critical
in that the direction of integral curves changes on crossing them. Thus

no physical solutions can cross r = 1 + 5. The detonation locus inter-

sects these lines at D+, which are the Chapman-Jouguet detonation points.
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In the expanding case, s > 0, an integral curve runs from D+ to the

point (0,1), which corresponds to a state of rest. This curve renresants

the solution given by Taylor's expanding, Chapman-Jouguet detonation
wave. However, no integral curve can be extended from the point D,
corresponding to a contracting Chapman-Jouguet detonation front. The
arc D_S_ of the detonation locus corresponds to overdriven fronts and

integral curves intersecting this arc all run into the critical line

r =1+ s. Hence there exist no uniformly contracting detonation fronts,

either Chapman-Jouguet or overdriven.

4. THE LIMITING CHARACTERISTIC

The boundary values at the front for the basic solution are
given by (3). However, the unknown parameter ¢ appears in the dif-
ferential equations, so that an extra condition remains to be found.
This is obtpined by examining the lines on which the solution of

equations (5), (6) may be singular. There are four such lines
1 - (utc)e =0
l -ut=90
E= -

In the R - t plane these lines have equations of the form & = constant

so that

dR R, .,-1.1-1/c
de "¢ Tt R
on them. Hence the first pair is
* ok
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i.e., the positive and negative characteristics through R = 0, ¢t = 0.

E= -0 i8R=0, t<0. In the region t < O there is a limiting
negative characteristic (l.n.c.) traveling behind the shock and

reaching R = 0 at the same instant, t = O, as the shock. For an
arbitrary choice of & the solution will be singular on this line. Such

a singularity could exist only if it were produced during the initiation
of the shock and precisely on this limiting characteristic. For this
reason we shall exclude the possibility of a singularity of this type
and require the solution to be regular bn thel.n.c. Let the equation

of the l.n.c. be ¢ = §1(0 > §1 > - 1) in the basic flow, and

g - §1(1+8R'2+2/a)

where & is a constant, in the perturbed flow. Thus the boundary values

k%
of u, ¢, #, in the form (11) on the l.n.c. are

1-1/a

S ue R g dap )Rt
!

* - -
- c(gl)R1'1/a+ {(_«cié) .5 + c<§1)1 R 1+1 /e
&

¢ - k(l-é) log RHI(E,) +i(§-g§ £,8 + F(glfg p-2t2/a
1

Also, on this line

dR L
— -
dt u ~C

and, from its equation, we have

dR . 1 ¢ 1-1/a -1+1/a73
4x 51%! - (3-20)R
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on it. Equating the coefficients of Rl-l/a, R-1+1/a in these expressions
dR
for 3T gives
£1(ugmey) =1
(14)

d . -
§i5%¥(u-c)} : + gl(ul-cl) + (3-2a)8 = 0
1

where uy - u(gl). If we denote by 8, the value of 8 on the l.n.c. and

let

r = r(so)
dr
r1 " (ds
g=g
o]
then (14) can be written as
r -8, = 1 (15)
- . 1hH Bt
r =35 + 2(x-1)% + ’2 8 (16)
° ° 25°(r1+k)

where derivatives have been eliminated using the basic equations.

Since this line is a negative characteristic the variables

there must satisfy the characteristic condition

* % * ¥ * .
d(u -ke ) = iﬁiﬂ* dt - 5— dg

which, on setting the leading two coefficients zero, gives

1 k 1
(I-E?(ro-kso) = jroso - ;(l-a?so (17)
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. 20D
SLS° 202 (r +) }i T(rgteg) + 1 Y(Y-I)E

\
+asi2ja1+y 2M+M°’—1L (18)

0

+5{2a-3 5“—(-\1{-'—"1%%3 F =o0.

The conditions (17) (18) could have been derived directly from the

differential equations. We require %?’ %? to be finite on g = gl,

i.e., r = 1+ g. Hence we require B =0 for s =3 o’ which 1s equiva-
dr d
dg’ dy
8 = s means that A must be zero to order s8-8, which can be shown to

lent to (17). Similarly, the condition that be finite for

¢

be equivalent to (18).

5. IHE BOUNDARY CONDITIONS

* 0k _k
The boundary values of u , ¢ , @ at the front are given by (10),

from which we can deduce the boundary values of r, s, r, 8, F there,
taking into account the displacement of the front from the shock path.

The equation of the front is

- B . -2+2/aq
g 1+ Toog

Hence, on the front

1- l/a - 141/
u = y(-1) A + u(=1) ¢t A
{3 23¢ dg = 1
c . e(-1) xl 1/a %\3 20: dg + 5(_1)} )‘o1+1/oz

0" = kQ- é—) log A + #(-1) +{F(-1) + ﬁ(gg “i il
g=-1

PP

R e
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and equating these to (10) and expressing the result in terms of r, s,

r, 8, F, gives

g = -E
r(-E) = %
- - 28 2jay RE
r(-E) D) (3-20) v + 20 11 K

(19)

- - -fE jo(y-1) '
s (-E) 2% Y+ + otk-kal - E

F(.E) = H°+kB.{1 + 531—"‘1)}

-2

The above boundary values, together with the regularity conditions
(16), (17), (18) serve to determine the solution. The basic solution for
r = r(s) has to satisfy the differential equation (8), which contains

the unknown parameter ¢, and the boundary values r(so) =T, r(-E) = ;%T’

where r ,8  are given in terms of C by (15), (17). On substituting (15),
i.e. ro =]+ 8, into (17) a quadratic in 5, is obtained. Consider the

expansion for r(s) about the l.n.c.

r(s) = r+r (s-s) + rz(s-so)2 + ..+ rn(s.go)n .

The svlution can be developed theoretically by substituting this series
into the equation (8) and hence evaluating the coefficients r by

equating the coefficients »f (s-so)n to zero, Let

ot

n
B+ =B  + Blt(a-so) + . .+ Bnt(s-so) + ...
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Then the equations for L are

29°(r1+ k)Bl_ + (l-rl,(rl- k)B°+ =0

. .

-Zso(r1+ k)Bn_ - 230nrnB1_ + rn(rl- k)B°+ - (l-rl)nrnBo+

+ terms in r etc. =0, n>2

n-1’ Tn.2

The first two of these, which determine r, ). are quadratic equations
but all of the succeeding ones arxe linear since Bn- contains T Yol
etc, and is linear in T Thus, for a given value of a, there are

four solutions and we require one of these solutions to pass through
the shock point for some particular value of a.

The perturbation terms r, 5, F have to satisfy the differential
equations (13) together with the boundary conditions (19) containing
the unknown parameter B, which measures the displacement of the front,
and the boundary conditions (16) (18) containing the unknown l.n.c. dis-
placement 8. The latter contains Fo, which is the boundary value of
F on the l.n.c. and is the third unknown. Thus there are six boundary
conditions conteining three unknown parameters B, 8, Fo and,‘since the
boundary conditions are linear, the solution for r, 5, F is uniquely

determined in terms of r(s).

6. THE NUMERICAL SOLUTION

In oxrder to evaluate the perturbations it will first be necessary
to find the correct value of & and tabulate the basic solution r = r(s)

for the particular choice of y and j. We can avoid the possible difficulty

.

o A A A" P, . o O -+ - A e ot P T . TS s
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of %f being indeterminate at s = s_ on direct substitution into the
differential equatlon (8) by making use of the power series expansion
tor r(s) at s = 8,7 the existence of which is ensured by the regularity
assumption. However, direct computation of the coefficients r is out
of the question because of the rapidly increasing complexity of the
form of the equations for L and each r has to be dealt with
separately. For this reason the following iterative method is employed.
Let Rn’ RA be tabulated functions which represent r, r' respectively

as far as the term involving T in the form

R; = r1+2r2(s-ao) + . .+ nrn(s-so)n-l + (n-*-l)e:m_l(s-so)'n + 0((a-s°)n+1)
R ™ r°+r1(s-so) + ..+ rn(S-so)n + €n+1(5'5°)n+1 + 0((s-so)n+2)

where €n+1 is constant.

From these we can deduce the next approximation R' by substituting

n+l’ R'n+1
the former into equation (8), written as f(r, r', s) = 0.
Then

2 azf

£(R ,R ,8) = (R - s) %f;+ (R~ r') gf—,- + %—(nn-r) 5-:2-

. pry OF
+ (Rn- r) ( - ) by + ..

2
O f
where ~——, = 0, ( =
' S-—
. which we can write as

; (@ = e ) G0+ e G >7§< 80"+ 0((e-a )™,
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In neglecting the term of order (s - so)n+2 in the above we obtain a

formula for € ,,-r ,.,, and hence the following iterative formula for
1Ty 1HTa

nt+l

R, =R'-. of (n) (20)

ntl  n of of
(s-5,) %5;)0 * G X

The error coefficient € in R;+2 so obtained is independent of

+2
En+1 and is & function of n and the partial derivatives of f at s = 8¢
From (20) we can tabulate R;+1 throughout the range s, to «E, and to

obtain Rn+1 we use the following integration formula

(%1

h V
' —_ . p! ' ol gt
) r'ds = 2 i T, + 131'1_1 + 13r1 ri+1§ (21)
s1-1

where h is the step width and ri = r'(si). The formula uses only points
of the subdivision, in which it is symmetric, and requires one extrapola-
tion st each end of the rénge in the table of the derivative. The

relative truncation error is

4
11 ,4.d'r
?55"h (d34) where 8.0 < 8y < 8441
°3

In practice the total range from S, to <E is roughly 0.2 so that only
5 subdivisions of the range are sufficient to ensure that the i -
tion does not introduce errors of order (s - so)n+1 (otherwisg:
iteration would fail to cénverge to the solution). The extrap. :

forumla corresponding to (21) is

' = v ' ' I .
ri+1 4ri 6ri_1+ 4r1_2 ri_3
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The initial approximations are taken as Ri =r, R, = r + rl(s-so) and
r ’ the iteration can be continued indefinitely. Being iterative the method
i3 suited for programming on a computer. Lt is self-checking to the
extent that it can converge only if the successive approximations Rn’
R; satisfy the differential equation more accurately at each stage. The
solution is developed in tabular form, ready for use in the solution for
r, s, F. Although the series expansion about one fixed point, s = 8,
is employed the convergence 1s very rapid since the total range & (0,2,
The method can be extended to the solution of the three
simultaneous equations (13) for r, E, F. Having selected 8, Fo
arbitarily we find EO, ;o from (16)and (18). To form the initial
approximations to r, s, F we require their derivatives at s = 8,
These are obtained by equating to zero the appropriate coefficient

in the expansions of the differential equations. These yleld

-Ao+(r1+k)

2
25°B0+

r1+ ksl Ll

R . Az_(rl-k)
ry- ks1 " so(l-rISB

1~

B°+F1 = . 2(14&)(r1+ k)(2r°s°F°+ krb)

where Az_ is linear in Tys 85 Fl.

1

formulae for ﬁ;+1, etc., are obtained by substi@uting the nth approxi-

Thus we can tabulate R! = El’ Rl - Eo+ El(s - so) etc. The iterative

mations into the governing equations and retaining only the first term,
which gives three simultaneous, linear, algebraic equations for the !

corrections ﬁ;+1 - RA, etc. Solving the equations we obtain the required
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iterative formulae, and, for example

-
[ (”) + (n+1)( L) }L(n)

- (n+1)(§—) M(n) (s8-8 )

N & G
+ N =
&

where equations (13) are denoted by L, M, N respectively,

M(n) = MR, R, 8!, . . L)

Pla &) {(%) + () z

(BM

- (g-.) igr) + (n+1)(§—.) 2

and (%g) , for example, is the coefficient of (s - ao) in the expansion
1
of (g%h about g = 8, and is also the first non-vanishing coefficient.

7. IHE BASIC SHOCK WAVE SOLUTION

For a given choice of y,j we wish to calculate the appropriate
value of @ and tabulate r(s) from the l.n.c. to the front. It remains
to be settled which of the four solutions can be made to satisfy the
conditions of the problem. The six cases y = 1.2, 1.4, 5/3 with j = 1,
2 were computed by Butler (1954). The same solution '"branch" is taken

in each of these cases. In extending these results to the case y = 3,

corresponding to the motion of the products of a detonation, it is found

that a different choice of branch is necessary. For this reason it was

B
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thought necessary to examine the behavior uf the integral curves of the
cquativa wiihi &« view to examining the nature of the change-
over and also the existence and uniqueness of the solution; particularly
in the region of the changeover. The integral curves for the case vy = 1.4,
j = 2 are given by Guderley. The twc cases selected here are y = 5/3,
jmwm2andy =3, j=2.

The equation (8) for r(s) can be written

1dr _ z-1 r(r-1)(or-1) + 82{%(1-01) - a(j+1)ri
E E [ =y

® (ee1)? { b (A} - £ (o) + ke {32 4+ 010}

which has nine singular points. There are three on the r-axis Pa(0,0),

Pl(O,l) and (O,é) and three in the region s < 0

Py(s s 1+ )

P

3(8

o=’ 1+ LI

k
P (S, a(iHctl) )

using Guderley's suffices. The remaining three are the mirror images of
P2’ P3, PS in the r-axis and correspond to expanding flows. The quantities

8,4 are the two roots of the quadratic for L and S is the negative solu-

tion of
82 - r!r-l!!ar-l)
K {l-'g + a(l-r)}
Y
h - ——-—L————
where r (Y

The behavior of the integral curves is found by determining the

nature of these singularities, the region of interest being s < 0,

o
Q

Ay g o




l

25

0 < r<1l, In these calculations the correct value of @ was used. The

PPN, T N - i . mda . _ asa
LEMLE & LUL LT va@de ¥ T Jfdy ) T & ALl curves

change direction on crossing the line r = 1 + s, except for the two
limiting ones through each of P2 and P3, which represent the four solu-
tions which are regular on the l.n.c. We require a curve which starts
at the shock point and passes through P2 or P3 and also through the
origin P4’ which corresponds to t = 0. On this curve time must increase
from the shock point to P4' From the sketch it is seen that i{l.ere are
two such curves, one through P

and the other through P_,. One of these

2 3
has to be made to pass through the shock point for some choice of a.
For values of y in this neighborhood it was found in practice that an
appropriate solution was found by selecting the curve through P3 and
the curve through Pz could not be made to pass through the shock point.
The sketch of the integral curves in the case y = 3, j = 2 are
given in Figure 3. In performing the calculations to determine the
nature of the singularities the correct value of & was used. In this
case P2 and P3 are both nodes and P5 is a saddle point, below the line

r= 1+ 8. The two curves running towards P_. can be digcounted but

5
there is no obvious choice between the remaining two. Again only one

solution was found, the curve through P, being selected in this case.

2
Investigation of the integral curves does not settle the

issue of uniqueness of the solution. For given v,j there is a range of

values % <a< az for which 8, is imaginary. The range 0 < a < @

1

never yields any solutions. For j = 2 a3 y is increased from 1.2 the
correct value of o approaches az and the correct values of 8, approach
each other. For some critical value of v, Y, say, the roots are equal

and the transition from one branch to the other occurs at Yo For any

given value of v, a, is that value of a for which PZ’ P3 coincide. For
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values of a < o, these two singular points are complex and 8o no regular
solurtions can be contlinued across the line r = 1 + 8 to the origin. As

o is increased from %) P2 and P_ separate and move along the segment of

3
r=1+ 8 as far as (0,1), (-1, 0) when @ = 1,
We require a solution through either P2 or P3, the solution and
the positions of the two points depending on the value of @, and also
through the shock point, the position of which depends on Yy only. In
Table 1 d(Pz) denotes the discrepancy, for the spherical case, between
the solution obtained by integrating from P2 as far as s » -E and the
i required value of ;%T— there. For Y = 1.865 d(P3) has a zero in the given
range and this zero corresponds to the actual solution. Apparently d(Pz)
has no zero. The situation is reversed in the case Yy = 1.875, the point
P2 being appropriate in this case. Thus, 1.B75 >y, > 1,865. The tran-
sition at y = Yc_takes place smoothly and there is no apparent physical
. aignificance to'the case y = yc.
For a given y the rootr for'sd are monotonic in @ in ghe range
0 <a<1, so that Pz, P3 Vary continuously, without repetition, along
the arc r = 1 + 8 as & varies between a, and 1. Together with the resultsl
of ‘Table 1 this suggests the following behavior. For a = az, Pz and P3
coincide and_fhe singlé integral curve through them separates the area
0<r<l, r>%+3s into‘two distinct regions. As @ is increased the
two integral curves through Pz, P3 must lie wholly within each of these
regions so that points in the lower region may be reached from P3 for some

value of @ and those above from Pz. It seems likely that no two curver

. through one of PZ’ P3 will intersect for distinct chonices of a. If this is

so then the solution will be unique for all y. The choice between P2’ Pé is
determined by whether the shock point lies above the limiting integral curve
through the point formed by the merging of P2, P3. Apparently for y < Y,
the shock point lies below this curve, and above it for y > Y.

'vr’l
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The results for the eight cases vy = 1.2, 1.4, 5/3, 3 with j = 1,2
are given in Table 2 along with those given by Whitham's approximate
method, to be described later, fur comparison. The case Y = 3 has not

been studied previously.

8. THE PERTURBATION SOLUTION

The solution for the perturbation s are now obtained by integrating
the three simultaneous equations (13) for r, s, F, subject to the boundary
conditions at the front and the l.n.c¢. The function r(s) and the para-
meter @ appearing in (13) are now known. As for the basic solution we
develop the solution away from the l.n.c., having satisfied the regularity
condition there, as far as the front. To do so we select arbitrary values
of 8, Fo, which determines r, s, F at s = 8, and continue the solution‘
to s = -E, where the conditions will, in general, not be satisfied by

the present solution. Suppose we have found two such linearly independent

(o) _(o)

solutions, corresponding to choices &, Fo and 5(1), Fil) for the
values of 8, F . Let Eéo), Eéo) denote the values of r at & = s, -E

respectively of the o solution. The boundary conditions at the front,

given by (19) can be written as
ry ™A B-K

EH = A, B -E'

FH - A3 g+ Ho’ where B is unknown.

Let us take a linear combination of the two numerical solutions and

satisfy the above conditions. Thus

N
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xfé") + Yflgl) = AP - K

2(0) | (1) o
X8 + v8, " = ap - E (22)

(o) (1)
XFp "+ YRy AR +H

which can be readily solved by X, Y, B so that we can thus evaluate B.
The solution for ¥, s, F appropriate to the boundary conditions can be
obtained by performing the integration from the l.n.c. with the correct

values of 8, F_ vhich are given by

F o= xp(® 4 gD
0 [»] (o]

2G4 1090y 4 vy 3D

5 -
2(a-1) + F1-10Boy

2
2 o().1+k)

The qua;tities K, E', Ho appearing in (22) depend upon the
values of Q, c: . However, the dependence is linear so that all that
is necessary is to evaluate two solutions due to linearly independent
choices o§ Q, c:Z. For simplicity we can take Q ~‘1; c:2 = (0 and
Q= 0, c, * 1, the former corresponding to a detonation front and
the latter to the correction due to counter-pressure. The solution in
a gpecific case, due to either or both of these effects, is found by
taking the appropriate combination of these two solutions. For y = 1.2,
1.4, 5/3, 3 and j = 1,2 we have sixteen distinct cases. The results
for these are given in Tables 3, 4, 5, and 6 along with those obtained
by the approximate method of Whithum. The boundary values of u*, c* at

the front are given by
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R 74-2“1)‘1-1/01{1 + (p- %lx)x-l+1/a}

* -1/l b= )
¢ = Bl 1’“{1 + (B B0 242/a |

The coefficients B - I%l K, B+ g— are also tabulated.

9. THE RESULTS AND THE WHITHAM SIMPLIFIED ANALYSIS

Before discussing the results it will be of interest to
evaluate the solution by the approximate method in the form given by
Whitham. It is known that this gives remarkable accuracy in estimating
a (Chisnell, 1957; Whitham, 1958). Chisnell employed his "shock-area'
rule, which he formulated for shoc.l: waves in channels of slowly varying
cross-section, in the evaluation of a for y = 1.2, 1.4, 5/3 and § = 1,2
and compared the results with Butler's. Whitham obtained Chisnell's
results by assuming that the characteristic conditions to be satisfied
behind the shock will be satisfied by the boundary values there. This
method will be applied to the present problem.

The characteristic condition to be satisfied behind the front

is

* * L . * %
d(u-kc)-jucnldt-;l(-cda

and the boundary values there are

* 2 l-l/a 28 | p-l+l/c
u v R + (K- Y+1) R

%* - -
N w grltlle 1+1/a

+ (E'+ BE) R

¢ = k1 D) 108 R+ @+ kB) g-2+2/a
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On substituting these values into the characteristic condition,
drR _ * * =242/t

Iy EEPPUT . £o_a L - a . L) - " [ ] .
- s LAAWE UG dt “ T oWy WE VWwiLdlll a4 pudLyliviiLaL Ll N

-
Gl V@ LN LT

Setting the first term zero gives Whitham's formula for a

_LE

_1_.. [ Y.'-]'

R S wp - )
v+l vl v

Equating the coefficient of the second term to zero yields

2 4
ERK - ——E' 2 2
(D2 M
p=7— + i—F (24)
vwieT tE AGge

These approximate results neglect the effect of disturbances reaching the
shock from behind, due to the characteristic condition not being applied
coré;ctly. The changing surface area of the shock is accounted for. The
Qrea of the front is proportional to RJ which results in the exponent in
the power law for the shock speed, i.e., 115, being proportional to j.
The perturbation solution for B, which arises from energy te;ms pro-
portional to volume and independent of the geometry of the system, is
independent of j. The result (23) for ¢ is very accurate because the
prnpagationrof_the shock is largely governed by the focussing effect,
due to its surface area diminishing, and is affected little by other
disturbances. This is not the case for the perturbations neither of which
(heat release and initial pressure) are geometric effects and the results
for B are much less accurate than those for a. A graph of the approxi-
mete results for B is given in Figures 4 and 5.

From the ;eaults obtained by the full analysis it is seen that

*
for given j, Q, s there 1s always a change in sign in B, considered

as a function of y. Thus the introduction of either of the two effects

AT e
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can produce an increase or a decrease in the speed of the front,
dependiing upuu Lie vaiue of y. 1n each case g = U for some value of
¥ and in this case the perturbation of the front speed fa of order

k'4+4hx. The critical values of y were found by the approximate method
2

to be 1.30 for Q = 0, c:2 = 1and 1.2 for Q= 1, c, = 0. The graph
of B from the approximate method follows the behavior of the correct
values fairly closely, and the former would appeat to be sufficiently
accurate to estimate the critical values of y to two decimal places.
If the initially uniform medium considered so far is replaced
by a medium initially at rest but having variable density, p: - o RF,
say, where m is a constant, then the initial sound speéd c:¢: R.'.nlz.
The similarity hypothesis will still hold provided c: remains small

m

%
relative to U , i,e. 2 < é - 1, and the solution is

* -
.. )“1 1/a

v -1+1/a-m/2)

(1 + Br

2
*
where the value of B is identical to that in the case c, ™ 1, Q= 0,

computed previously. The coefficients of the perturbations do not
differ f£rcu the previous solution, the only difference being in the
power of A.

The authorlgratafully acknowledges the guidance of Mr. D. §.
Butler throughout the course of this work and in particular for
suggesting the numerical solution. The computations were performed
on the Atlas Computer of the Science Research Council, Didcot,

Bekshire.
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Table 1
Yy = 1.865 vy = 1.875
o d(P,) d(P3) o d(P,) d(P3)
0.674453 so imag. so imag. | 0.6738558 so imag. so imag.
0.6744535 - 0.00459 | - 0.00033 | 0.6738559 | + 0.00206 | + 0.0033
0.674454 - 0.00557 | + 0.00066 0.6738560 | + 0.00132 | + 0.0039
0.674456 - 0.00798 | + 0.00308 | 0.6738562 | + 0.00079 | + 0.0046
0.674460 - 0.0109 + 0.00606 | 0.67386 - 0.00387 i + 0.0092
0.675 - 0.0749 | + 0.0751 0.675 - 0.1003 + 0.118
Table 2
j=1 j=2
4
a O approx. a ¢ approx,
1.2 0.861163 0.859762 0.757142 0.754021
1.4 0.835323 0.835373 0.717174 0.717288
5/3 0.815625 0.816043 0.688377 0.688654
3 0.775667 0.772661 0.636411 0.629542

e R i




Table 3
2
*
j=2,Q=1, ¢, =0
1 1]
Y Bapprox| B |[p-TEx|p+E
1.2 - 0.0482 )~ 0.1009 § - 0.3209 | 0.8891
1.4 0.2158 0.2508 | - 0.2292 | 1.2108
5/3 0.5894 0.7737 | .. 0.1152 | 1.6626
3 3.2679 4.4760 |+ 0.4760 | 4.4760
Table 4
1, qe1, & ag
3 , Q P co 0
. L
Y B approx B ﬁ-ﬁz}'x ﬂ+'§"
1.2 - 0.04816|- 0.0819%]| - 0.3020 |0.9080
1.4 0,2158 0.2310 |- 0.2490 1.1910
5/3 0.5894 0.6692 (- 0.2995 |1.4783
3 3.268 3.594 |- 0.4056 |3.5944
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Table 5
L o _
J £, Q U)co
g!
v Bapprox| 8 [B-LEk|p+i
1.2 - 0.4730 |- 0.7047 [ - 1.7047 | 4.2536
1.4 0.2172 0.3097 | - 0.6903 | 2.7382
5/3 0.4541 0.6942 | - 0.3058 | 2.0942
3 0.6667 1.0435 |+ 0.0435 | 1.3769
Table 6
=} = 0 *2-1
J , Q » €,
1 E'
v B approx B (p-Brr|p+g
1.2 - 0.4730 | - 0.6211 | - 1.6212 ]| 4.3371
1.4 0.2172 0.2593 | - 0.7407 ]| 2.6879
5/3 0.4541 0.5587 | - 0.4413 | 1.9587
3 0.6667 0.7738 | - 0.2262 | 1.1071
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